Properties of Limits

Suppose that the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist and let c be a constant. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} \left[f(x)g(x) \right] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$
 if n is a positive integer

7.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
 if the root on the right side exists

Some basic limits:

$$1. \lim_{x \to a} x = a$$

2.
$$\lim_{x \to a} c = c$$
 when c is a constant

$$3. \lim_{x \to a} x^n = a^n$$

4.
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$
 if $\sqrt[n]{a}$ exists

Using the properties of limits and basic limits, you can find the limits of more complicated functions.